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Estimating the Probability Distribution of von Mises Stress

for Structures Undergoing Random Excitation, Part 2: Example Calculations
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Abstract
The primary purpose of finite element stress analysis is

estimate the reliability of engineering designs. In structur
applications, the von Mises stress due to a given load is oft
used as the metric for evaluating design margins. F
deterministic loads, both static and dynamic, the calculation
von Mises stress is straightforward [2]. For random loa
environments typically defined in terms of power spectr
densities, however, the deterministic theory normally applied
compute RMS acceleration, displacement, or stress ten
responses cannot be applied directly to calculate the probabi
distribution of von Mises stress, a nonlinear function of the line
stress components. Recently methods have been develope
solve this problem [4]. Those methods and are applied here to
example structure.

1. Introduction
Failure of ductile structures is associated with von Mise

stresses that exceed the strength of the material. A first le
reliability survey would consist of calculating RMS values of vo
Mises stress and assuring that those values are comfortably
than the strength of the material involved[3]. The next level o
scrutiny would involve computing the probability distribution o
von Mises stress at regions of high RMS value, to assess w
fraction of the time that material exceeds some threshold value
von Mises stress.

In an accompanying paper [4], Segalman and Reese derive
probability integral for von Mises stress resulting from th
application of Gaussian, zero-mean loads to a linear structu
They also show how that integral can be approximate
✝Sandia National Laboratories is a multiprogram laboratory o
the United States Department of Energy under Contract DE
conveniently. Here, we illustrate the application of those metho
to a specific structure.

Because the von Mises stress is a nonlinear, (non-negat
function of the stress tensor, the probability distribution of vo
Mises stress cannot be Gaussian, even if the components of
stress tensor each have Gaussian distribution. In general,
form of the von Mises probability distribution is not knowna
priori . Design of structures to achieve a desired level
reliability with respect to von Mises stress requires calculation
both the form of the probability distribution and the paramete
of that distribution.

The reliability of structures of ductile material is assessed
terms of the probability distribution of the von Mises stress. Th
distribution depends on both the structure and the loadi
applied, so at minimum, calculation of the distribution requires
linear model for the structure and a statistical specification of t
input forces. In principle, from the linear model one can dedu
all required transfer functions. The input forces are typical
specified by their auto spectral densities with all phase cont
missing. In the case of multiple force inputs, the forces may
specified by a cross spectral density matrix over frequency. T
method illustrated here uses exactly that information, along w
a linear model for the structure, to calculate the probabili
distribution of von Mises stress.

2. Analytical reliability model
The von Mises stress is a function of the stress tensor:

, Eq 1

where

p
2

t x,( ) σ t x,( )T
A σ t x,( )=
perated by Sandia Corporation, a Lockheed Martin Company, for
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 and Eq 2

Here, is the stress vector at time and location
containing the six non redundant terms in the stress tensor.

The derivation of Segalman and Reese [4] shows t
probability of the von Mises stress being less than some value
to be given by

, Eq 3

where is the -dimensional ellipsoid containing
points of the process that generate von Mises stress less t

:

. Eq 4

The diagonal matrix is obtained through a process th
involves the covariance matrix of the modal coordinates and t
tensor-valued stress distributions associated with each mode.
covariance matrix is obtained in part from the cross spect
density matrix. Considerations of the lineage of show that
can have dimension at most five. See [4] for a detailed discuss
of this derivation.

The derivation referred to above also illustrated that the roo
mean-square value of von Mises stress can be expressed in te
of ,

. Eq 5

In general, the integral of Equation 3 cannot be evaluat
analytically. A method for numerical quadrature that yields upp
and lower bounds for the that integral was introduced b
Segalman and Reese [4]. That quadrature is sufficiently efficie
that examining the probability distribution of von Mises stress
selected locations is now tractable.

3. Example Problem
Here we apply the analytical methods discussed above to

hollow cylindrical structure shown in Fig. 1. The system ha
free-free boundary conditions, with a large mass tied at one e
As discussed in [3], transfer functions relating output stress d
to input force can be calculated. With these quantities known, t
output von Mises stress due to a random load can be comput

Three random input loads were considered and independe
applied to the cylinder tip as shown. Figure 2 illustrates th
power spectra of the applied input. These three load cases w
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selected to excite the vibrational modes of the syste
deferentially. In each case, the resulting von Mises probabil
distribution is evaluated at four points, denoted asA, B, C, andD
in the figure. These points were selected to show the wid
variety in the form of probability distribution of RMS von Mises
stress from all excited modes throughout the structure, and for
frequencies of interest.

4. Verification of the analytical method
To check the validity of our analytic methods, time series da

was synthesized and compared with the analytical predictions
von Mises stress distributions at each of the four points on t
structure. The necessary ingredients of the calculations indica
in [4] were assembled in MATLAB using modal data an
transfer functions obtained from MSC/NASTRAN. The resultin

were used in a C language code to calculate t
probability distributions.

Time series data was synthesized in the following manner:

• A Fourier expansion for the imposed load was created fro
the PSD of Fig. 2.

• Random phase information was assigned to the input.
• The above synthesized Fourier expansion for load was m

tiplied by the appropriate vector-valued stress transfer fun
tions to obtain the Fourier expansions for stress.

Fz

Fx

Fy

Figure 1.   Finite element model of hollow cylinder.
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Figure 2.     Acceleration PSD imposed at
base of cylinder.
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• Time series for stress were obtained by inverse Four
transform of the above series.

• The quadratic indicated in Equation 1 is evaluated at ea
time to yield a time series of von Mises stress.

• Histograms are compiled from the above time series.

Because Fourier transforms of very long series must
assembled at each sensor location for each test, the above pro
is very tedious and not of much practical use. Still it provides
reasonable basis for comparison to the innovative meth
presented in [4]. The cumulative probability distribution i
constrained to increase monotonically from zero to one. As
result, it is difficult to compare details of such curves. Instead, w
compare the probability density functions (derivatives of th
cumulative probability).

Figure 3 shows the probability density curves of von Mise
stress for all three loadings at location A. Shown are both t
histograms obtained from the synthetic data and correspond
curves obtained by differentiation of the computed cumulativ
probability. Very good agreement is achieved. This point w
selected for study because it was anticipated that for ea
loading, all excited vibration modes would contribute to the sam
stress component. A result of this co-linearity of the stresses
that the rank of matrix , a quantity indicative of the number o
independent random processes experienced at the point
observation, is 1. The derivation in Reference 4 indicates that
form of the probability density for such problems would be th
right-hand side of a normal distribution, which agrees with th
shape of the curves in Fig. 3.

Figure 4 shows the probability density curves of von Mise
stress for all three loadings at location B. The rank of is on
for loadings in the X and Z directions. For those loadings, th
distribution is similar in form to the distributions in Fig. 3. The
rank of associated with loading in the Y direction is 2 and th
form of the probability density is different: the density is zero a
the origin, increases linearly, reaches a maximum and th
declines. Again, agreement between the analytic approximat
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Figure 3.   Probability density functions for von
Mises stress at location A.
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D
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and the histogram of the artificial data is very good.

Figure 5 illustrates the probability density curves of von Mise
stress for all three loadings at location C. The rank of is tw
for all three load cases. The distributions are similar in form
the distribution associated with the Y loading in Fig. 4
Agreement between the analytic approximation and t
histogram of the artificial data is still quite good.

Probability density functions of von Mises stress for th
loadings at location D are shown in Fig. 6. The rank of is tw
for loadings in the X and Z directions and curves of the form
described in the above paragraph are seen again. For the cas
loading in the Y direction, the rank of is three. In this case th
form of the analytic probability density is subtly different from
what is shown in the other two curves. For this loading, th
density is zero at the origin, increases quadratically, reache
maximum and then declines. Again, we have very goo
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Figure 4.   Probability density functions for von
Mises stress at location B.
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Figure 5.   Probability density functions for von
Mises stress at location C.
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agreement between the histogram of the synthetic data and
analytic approximation.

There is some complexity to the structural response of t
cylinder to the applied loads. For the case of loadings in the
and Y directions, the rank of the covariance matrix of the mod
coordinates is eight. For loading in the Z direction, the rank
nine. The covariance matrix plays a role in the calculation of
and its rank is an upper bound for the rank of . In general t
maximum possible rank of is five, but in problems such as th
where there are only three non-redundant components of
stress tensor, the maximum rank of is three. This restriction
illustrated in Fig. 7, where the rank of is contoured over th
surface of the cylinder.

5. On Reliability Calculations
In dealing with Gaussian distributions, we are in the habit
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Figure 6.   Probability density functions for von
Mises stress at location D.
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Figure 7.   Contours of the rank of  over the
surface of the cylinder.

D

D

making assumptions such as that 99.8% of all values will be le
than three times the RMS value. Such assumptions are
always appropriate. To illustrate, consider three different cases
the matrix . These cases are enumerated in Table 1, where

’s are the singular values of .

The cumulative distributions for these three cases a
presented in Fig. 9. In this figure, the abscissas are normalized
the RMS value of von Mises stress, . For Case 1, having on
one random process in effect, the value of von Mises stress be
which 99.8% of occurrences lie is - as one expects. F
case 2, the three sigma practice again appears adequate. Th
not surprising since the ’s are so similar. For Case 3, on t
other hand, the value of von Mises stress below which 99.8%
occurrences lie is , showing the “three sigma” rule to b
conservative.

Having shown that the “three sigma” rule is not alway
accurate for a von Mises failure criterion, we now show that th
method illustrated in this paper for calculating cumulativ
probability distribution can be used constructively to make th
necessary estimates.

A good representation of the status of a design with respec
a random loading is obtained from Figs. 10 and 11. In Fig. 1
the RMS values of von Mises stress are plotted for the case
loads in the Y direction imposed on the finite element mode
Figure 11 shows the contours of the probability that von Mis
stress is greater than 2000 psi for the same problem. Note t

D

Case
No

Rank of p such that
0.998<P(p)

1 1 1.0 3.0p

2 2 1.0 0.1 3.0p

3 3 1.0 1.0 1.0 2.2p

Figure 8.   Example values of D and comparison with
the “three sigma” rule.
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. These two pictures
provide the designer the information necessary to ident
regions that might require redesign.
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Figure 10.   Contours of RMS von Mises stress
(psi) resulting from random forces
applied in the Y direction at the cylinder
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Figure 11.   Contour plot of the logarithm of the
probability that von Mises stress is
greater than 2000 psi.
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6. Summary
The method of [4] for calculating the probability distribution

for von Mises stress has been illustrated on a simple structure
has been shown that the number of independent random st
processes taking place varies from place to place on the struct
It is this number of independent processes that determines
form of the probability distribution of von Mises stress at a give
point. As a result, one can know if the “three sigma” rule i
overly conservative only if the distribution is known at ever
point. Where reliability with respect to von Mises stress is
design constraint, the method for calculating the probabili
distribution of von Mises stress introduced in [4] is a tractab
and appropriate tool.
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